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The weakly nonlinear dynamics of quasi-geostrophic flows over a one-dimensional,
periodic or random, small-scale topography is investigated using an asymptotic ap-
proach. Averaged (or homogenized) evolution equations which account for the flow—
topography interaction are derived for both homogeneous and continuously stratified
quasi-geostrophic fluids. The scaling assumptions are detailed in each case; for strati-
fied fluids, they imply that the direct influence of the topography is confined within
a thin bottom boundary layer, so that it is through a new bottom boundary con-
dition that the topography affects the large-scale flow. For both homogeneous and
stratified fluids, a single scalar function entirely encapsulates the properties of the
topography that are relevant to the large-scale flow: it is the correlation function of
the topographic height in the homogeneous case, and a linear transform thereof in
the continuously stratified case.

Some properties of the averaged equations are discussed. Explicit nonlinear solu-
tions in the form of one-dimensional travelling waves can be found. In the homo-
geneous case, previously studied by Volosov, they obey a second-order differential
equation; in the stratified case on which we focus they obey a nonlinear pseudo-
differential equation, which reduces to the Peierls—Nabarro equation for sinusoidal
topography. The known solutions to this equation provide examples of nonlinear
periodic and solitary waves in continuously stratified fluid over topography.

The influence of bottom topography on large-scale baroclinic instability is also
examined using the averaged equations: they allow a straightforward extension of
Eady’s model which demonstrates the stabilizing effect of topography on baroclinic
instability.

1. Introduction

The effect of bottom topography on large-scale ocean dynamics has been studied
using a variety of modelling hypotheses. Starting with Rhines & Bretherton (1973), a
number of authors have considered topographies whose scale is much smaller than the
typical scale of motion. This allows asymptotic techniques—essentially homogeniza-
tion techniques—to be employed to derive effective equations of motion in which only
the averaged, large-scale effect of the topography is represented. Recent papers by
Reznik & Tsybaneva (1999) and Bobrovich & Reznik (1999) present detailed analyses
of this kind for, respectively, two-layer and continuously stratified quasi-geostrophic
flows over one-dimensional topography; the reader is referred to these papers for
further background on the problem and for references.
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Most of the previous results concern linear waves propagating over one-dimensional
topography. A series of papers by Volosov and Zdhanov is however devoted to a non-
linear theory: extending the asymptotic approach of Rhines & Bretherton (1973), they
derive evolution equations for weakly nonlinear motion over small-scale topography
in the quasi-geostrophic regime, using homogeneous (Volosov 19764, b, c¢), two-layer
(Volosov & Zhdanov 1982) and continuously stratified models (Volosov & Zhdanov
1983). From these equations it is then easy to obtain closed-form solutions represent-
ing one-dimensional periodic travelling waves, which directly generalize linear Rossby
and topographic waves, and solitary waves.

The present paper is similar in spirit to those of Volosov and Zdhanov. Its main
novel result is an asymptotic theory for the weakly nonlinear motion of a continuously
stratified quasi-geostrophic fluid over a small-scale, one-dimensional topography. This
can be viewed as an extension to the nonlinear regime of some of the linear results
of Bobrovich & Reznik (1999). As is detailed in that paper, the dynamical regime
is mainly specified by the relationship between three key length scales, namely the
scale of motion L, the scale of the topography L, and the internal Rossby radius of
deformation L;, defined by L; = NH/f, where N, H and f are typical values of the
Brunt—Viisild frequency, ocean depth and Coriolis parameter, respectively. A crucial
assumption, common to all the papers cited above, is that of a scale separation
between motion and topography, explicitly expressed as

L
€=7 <L 1.
For a stratified ocean, the relation between L; and L; is also important. Here, we
assume that L; ~ L, so that L; < L;. This implies that the separation between the
large scale of the leading-order motion and the small scale of the topography (and
hence of the small-amplitude topography-induced motion) which is assumed in the
horizontal holds also in the vertical: the topography-induced motion has vertical scale
fL¢/N, much smaller than the total ocean depth H and is in fact localized within a
boundary layer.

The scaling assumption L; < L; makes our treatment of the stratified quasi-
geostrophic dynamics markedly distinct from that of Volosov & Zhdanov (1983).
In that paper, the different assumption L; < L, is made. The consistency of the
asymptotic analysis then requires the leading-order motion to be independent of the
vertical coordinate, so that the averaged equations are barotropic. Here, in contrast,
arbitrary vertical structures are allowed (provided that their vertical scale be O(1)
compared to H;), and the averaged equations are fully three-dimensional.

Once the relative magnitude of the three length scales is fixed, the other parameters
in the model may be chosen to obtain a distinguished limit in which all physical
effects (topography, transience, f-effect, nonlinearity) have a similar importance while
a consistent asymptotic solution can be developed. In the continuously stratified case,
this turns out to require a ratio h/H of the topography height to the total ocean
depth and a typical frequency ¢ that are related by h/H ~ €'/?¢/f; it also requires a
(suitably non-dimensionalized) velocity amplitude that scales like e. With this scaling,
closed averaged equations can be derived: they are given by the usual (linearized)
potential-vorticity conservation in the fluid interior, with a bottom boundary condition
provided by a system of two coupled nonlinear equations for the bottom potential
temperature and the fluid-parcel displacement across isobaths. This system presents
interesting similarities and differences with the corresponding system of averaged
equations found in the homogeneous case (which assumes that h/H = O(c/f) rather
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than O(e'/?¢/f)). For instance, the characteristics of the topography relevant to
the large-scale motion are encapsulated in a single function; this is the correlation
function of the topography height in the homogeneous case, but a linear transform
(related to the Hilbert transform) of the correlation function in the stratified case.

To allow comparison between the effect of topography in homogeneous and strati-
fied fluids, the paper starts with a derivation of the averaged equations in the
homogeneous case (§2). The results of Volosov (19764, b, c) are thus recovered.

The central result of the paper, namely the averaged equations for stratified quasi-
geostrophic flow over small-scale topography is derived in §3.1. We then consider a
reduced model of particular interest (§3.2). This model arises when, in the absence
of p-effect, the vorticity in the fluid interior vanishes identically. The dynamics is
then controlled entirely by the evolution of the potential temperature and particle
displacement on the bottom boundary. This model with trivial interior dynamics,
which may be viewed as resulting from the inclusion of small-scale topography in the
so-called surface quasi-geostrophic model (Held et al. 1995), is governed by evolution
equations involving a pseudo-differential operator related to the Hilbert transform.

The waves propagating in the model, supported by both the topography and the
p-effect, are discussed. In the linear approximation, a dispersion relation obtained by
Bobrovich & Reznik (1999) is recovered (§4.1). When the nonlinearity is taken into
account, the situation is somewhat involved, since the travelling-wave problem (one-
dimensional in particular) is governed by a nonlinear pseudo-differential equation.
However, we find closed-form solutions for a sinusoidal topography under the as-
sumption that f = 0 (i.e. for the surface quasi-geostrophic model; §4.2). In this case,
the nonlinear pseudo-differential equation to solve reduces to the Peierls—Nabarro
equation whose periodic solutions have been studied by Toland (1997). Of particular
physical interest is the solitary-wave solution (or, for the particle displacements, kink
solution) that can be found as a limit of periodic solutions.

An issue that can be examined using the averaged model derived in this paper is
the influence of small-scale topography on large-scale-flow instability, in particular on
baroclinic instability. This can be done straightforwardly by including in the model a
large-scale, vertically sheared flow and by carrying out a spectral stability analysis. In
§ 5, we apply this approach to examine how the simplest model of baroclinic instability
of a continuously stratified fluid, namely Eady’s model, is affected by topography.
The results complement those recently obtained by Benilov (2001) who addressed the
same issue using Phillips’ two-layer model.

We also note that the averaged equations obtained for both the homogeneous and
continuously stratified models are Hamiltonian. The Appendix is devoted to a brief
presentation of their Hamiltonian structure.

A remark should be made about the limitations of the approach used in this paper.
As is usual when formal asymptotics is employed, the averaged model is accurate in
describing the behaviour of the full system over finite, although large, spatial and
temporal scales. This remark is particularly relevant when one considers random
topographies, with a height field given by a non-degenerate random function (e.g.
defined by a continuous spectrum of Fourier modes with random amplitudes). In this
case, the phenomenon of localization is known to take place: waves are not periodic
but localized in space, with exponentially decaying tails (Molchanov & Piterbarg
1990; Sengupta, Piterbarg & Reznik 1992; Klyatskin 1996; Klyatskin, Gryanik &
Gurarie 1998). The averaged equations, however, do not capture this phenomenon
and predict exactly periodic waves whether the topography is periodic or random.
This is simply because, for Rossby waves over rough topography, the characteristic
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scale of the localization (the so-called localization length) is much larger than the
scale of validity of the averaged equations. In effect, the averaged equations can only
describe the spatially oscillating part of the waves while neglecting the large-scale
modulation that localization induces. (See Molchanov (1991) for a general discussion
of the relation between localization and averaging, or homogenization.)

2. Homogeneous quasi-geostrophic dynamics
We start by considering the homogeneous quasi-geostrophic equation

0V — 22y) + B+ Vy + éa(w,h) + 0(p, V?p) =0, (2.1)

where v is the streamfunction, H the mean depth, h the topography height, A~! =
JeH/f the radius of deformation, and d(-,-) the Jacobian operator (e.g. Pedlosky
1987, §3.12). We employ the standard Cartesian -plane but with a rotated coordinate
system (x, y) and write the planetary vorticity as f —f,x+ .y, where f and g = (B, 8,)
are constant.

We investigate large-scale motion over a one-dimensional, random, rough topogra-
phy. Introducing € < 1 as the small ratio of the scale of the motion to the scale of
the topography, the topographic height is written as

h(e™'y)=h(Y), where Y =¢ely. (2.2)
It is a periodic or stationary random function with bounded derivatives, zero mean
(n) =0,

where (-) denotes period or ensemble average, and with fixed correlation function
C(n) defined by

C(n) = (h(Y +n)h(Y)).

In the random case it is useful to introduce the Fourier transform h of h which we
define by

h(Y) = / e* hi(k) dk.

(Here and in the rest of the paper, integrals with unspecified bounds are understood
to have (—oo, +00) as integration range.) The values h(k) can be taken as independent
Gaussian variables, with

(h(k)h(1)) = C(k)Ss(k + 1), (2.3)

where the power spectrum ¢ (k) is the Fourier transform of the correlation function:

C(np) = / 1€ (k) dk.

The scaling of the topography which we use corresponds formally to a height
field h = O(1) and thus to a slope Vh = O(e™!). This scaling, also used by Rhines
& Bretherton (1973), Volosov (1976a,b,c) and others, is more precisely defined by
introducing an inverse time scale (or typical frequency) for the large-scale motion, ¢
say, which is given by |B|L if the dynamics is dominated by linear Rossby waves but
may be controlled by the topography. The relevant dimensionless assumption on the
relationship between frequency ¢ and topography height h then reads

h o
H f
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and can be recognized as the usual quasi-geostrophic scaling, with a relative height
of the order of the Rossby number a/f (cf. Pedlosky 1987, p. 89). This choice implies
that the topographic term in (2.1) is O(e') compared to the term with the time
derivative.

Since we are interested in nonlinear effects, it is important to determine the
amplitude of the motion. It turns out that the suitable scaling, giving rise to leading-
order nonlinearity, corresponds formally to yp = O(e) or, in dimensionless terms,
to

% = 0(e).
Written as y/(oL) ~ eL = L, this condition can be identified as the requirement that
the typical horizontal displacements of fluid particles be of the order of the scale of
the topography L.
Adopting this scaling, we expand the streamfunction as

w = ep® 4 2y 4o (2.4)

and employ a multiple-scale technique to derive an averaged evolution from (2.1).
Performing the substitution d, — e 'dy + 0, in that equation, we find at leading
order, i.e. at O(e™!),

0:07y 9@ + 0005y yp @ — 0y o}y @ =0.

We are interested in the situation where the leading-order motion depends on the
large-scale coordinates only; therefore we select the solution @ = 1p©@(x, ). At O(1)
we find

f

H
where i’ = dh/dY. The general solution is given by

0,05y + 0,003, LV + Lo p® =0,

Oy = L lat ¥ —n) —h(¥)],
where g(x, Y) is an arbitrary function, and where #(x, t) satisfies
om = 0, (2.5)

and is the leading-order horizontal displacement of fluid particles across isobaths.
Assuming that the small-scale motion is entirely driven by the large-scale flow, we
require that 0%, ¢! = 0 when # = 0 and find

By = L0 =) — (Y] (26)

This solution takes a natural interpretation in terms of vorticity conservation: 0%, !
is the vorticity response to the topographic stretching associated with the leading-
order motion. We note that (0%, yY) = 0 as required for 'V to be a periodic or
stationary random function as is h.

At O(e) a solvability condition must be imposed; it is obtained by averaging the
O(¢) equation. This leads to

f
H

The expression (2.6) for 1! can now be used to derive a closed nonlinear evolution

(VO — 22p ) 4 - v + L (W opV) = 0. (2.7)
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equation for p©. Integrating twice by parts and introducing (2.6), the averaged term
in (2.7) is written as

Y Y
wrne) = ([ norar et gy =~ ([ vy no—nea).

where Y, is an arbitrary constant. Another integration by parts then gives

: f f
(W (V)axp') = = (WYY =m)dn = 5 Cma,
using the evenness of the correlation function C(#). Introducing this result into (2.7)
provides the averaged, or homogenized, evolution equation for p©. This equation is
coupled with equation (2.5) for the displacement #. Omitting the superscript (0) of
the streamfunction for simplicity we write these two equations as

0V — 2y) + B+ Vy + K()on =0, (2.8)

o — 0y =0, (2.9)

where K () = f>C(n)/H>.

These equations, previously derived with A = 0 by Volosov (19764, b, c¢), describe
the weakly nonlinear quasi-geostrophic motion over the topography h(Y ). The only
nonlinearity appears in the correlation function K(#); when it is neglected, i.e. when
linearized equations of motion are considered, K(x) is replaced by the constant
K (0) given by f2>/H? times the variance of the topography. In this case, and when
normal modes are sought, the equations derived by Rhines & Bretherton (1973) are
recovered. Similarly, the spectral equations derived by Benilov (2000) to study the
effect of topography on homogeneous instability can be recovered: these equations,
which include the effect of an O(1) shear flow (U(y),0), are obtained when the time
derivatives in (2.8)—(2.9) are replaced by 0; + Ud, and the first component of f is
replaced by f, — U".

Rhines & Bretherton (1973) and Benilov (2000) pointed out the analogy between
quasi-geostrophic motion over one-dimensional topography with f = 4 = 0 and two-
dimensional stratified fluids (see, e.g. Gill 1982, §6.4). This is transparent from (2.8)—
(2.9) when they are linearized: up to a normalization,  plays the role of the (potential)
temperature and K (0) the role of the square of the Brunt—Viisila frequency. Thus, in
the same way as stratification introduces a restoring force inhibiting motion across
isopycnals, topography introduces a restoring force inhibiting motion across isobaths.

The nonlinearity present in (2.8)—(2.9) is clearly associated with the topography; it
dominates the advective nonlinearity d(yp, V?yp)—which is O(e?) only—and it can be
interpreted as a nonlinear dispersion. Since K(#) is expected to decrease (possibly
non-monotonically) from a maximum for # = 0 to zero for  — oo, nonlinearity is seen
to decrease the restoring force associated with the topography. The consequences of
this effect for finite-amplitude wave propagation have been investigated by Volosov
(1976a,b,c) who found periodic and solitary waves as solutions of the averaged
equations (2.8)—(2.9).

The validity of the averaged equations for random topographies can be assessed
by estimating the first-order term in the perturbation expansion (2.4). From (2.6) we
find that it can be written as

f Y Y’
lp(l) — _H/ / h(Y”)dY,dY”.
Y—n JO
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With this result it is easy to show that ((p")?) ~ |Y| provided that C(0) is finite, i.c.
the integral of C(Y) is bounded as |Y | — oo; this implies that y! typically grows like
|Y'|'/2. Therefore, over the spatial scale of interest, namely y = O(1) or Y = O(e™'),
the expansion (2.4) remains well ordered, and the averaged equations (2.8)—(2.9) are
valid with an O(e'/?) error. (This error estimate can be confirmed by a rigorous
averaging procedure which eliminates low-order rapidly varying terms by means of
near-identity transformations (cf. Arnold 1988, Ch. 5).) Phenomena not captured by
these equations, such as localization, take place over large spatial scales: y = O(e~/?)
or larger. In fact, Molchanov & Piterbarg (1990, equation (10)) found for a specific
random function h(Y) that the localization length scales like e~! (see also Sengupta
et al. 1992, equation (11)).

We note that the accuracy of the averaged equations is improved when C(0) = 0: it
is in particular easy to show that ((yp")2) is bounded provided that C(k) = O(k?) for
k — 0, suggesting that the error is at most O(e). More generally, we expect the error
to decrease, and correspondingly the localization length to increase, the faster C(k)
tends to zero with k. The 1mportance of the small-k behaviour of the power spectrum
C(k) for the accuracy of the averaging is quite natural since this quantity controls, in
a statistical sense, the scale separation that exists between topography and large-scale
motion. In this respect, it is worth pointing out that the validity of the averaging
for non-degenerate random topographies hinges on the fact that the power spectrum
of the random process present in the equation of motion, namely h'(Y), necessarily
vanishes for k = 0 since it is given by k2C(k); were this not the case, the averaged
equations would not be valid, and the localization length would be O(1) as has been
found for different physical systems (Molchanov 1991).

A direct extension of the analysis leading to (2.8)—(2.9) to include the effect of a
small-scale shear flow may be of some interest. It turns out that adding the effect of
a small-amplitude zonal shear flow (eu(Y),0), where u(Y) is a periodic or random
function similar to h(Y'), leaves the analysis virtually unchanged. In particular, the
averaged equations (2.8)—(2.9) continue to hold, but with a new definition for K(»),
namely
f? f

K(n) = 273 (h(Y +mh(Y)) — 2o (h(Y +mu'(Y)).
Note that it is only through its correlation w1th the topography that the shear flow
influences the averaged dynamics. In the absence of topography, the effect of the
shear flow is much weaker, and a scaling very different from the one used here is
required to derive averaged equations (see, e.g. Gama, Vergassola & Frisch 1994).

3. Continuously stratified quasi-geostrophic dynamics
3.1. Averaged equations

We now consider the effect of a small-scale topography on the large-scale dynamics
of a continously stratified quasi-geostrophic fluid. The quasi-geostrophic potential-
vorticity conservation equation for a Boussinesq fluid can be written

0q+B-Vy+a(p,q) =0, with g=0o,p+0d,p+ad(S"0.yp).  (31)

In these expressions, z is the vertical coordinate, directed upward, and S = f~2N?,
where N is the Brunt—V4iisdld frequency, a function of z only; all the other quantities
are defined as in the homogeneous case of §2 (e.g. Pedlosky 1987, §6.5).

Equation (3.1) is supplemented by two boundary conditions at the bottom and
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FIGURE 1. Scaling of the stratified quasi-geostrophic model: the ratio between the typical scale
of motion and the horizontal scale of the topography is ¢ < 1, and the relative height of the
topography h/H scales like €'/? times the Rossby number ¢/f. The scaling implies the existence of

a boundary layer of height e near the bottom boundary where the influence of topography is felt
directly.

top boundaries defined by z = 0 and z = H, respectively. These conditions express
potential-temperature conservation and read

@@w+ﬁ%@w+f%%20atz=o,}

(3.2)
0,0,y + 0(p,0,p) =0 at z=H.

Here 7 is the topographic height, which is a periodic or stationary random function
of the rapid spatial coordinate Y = €'y, as in the previous section. For topographic
effects to appear at leading order in the homogenized equations of motion, the scaling
of the height must be slightly different from the one used in the homogeneous case.
It turns out that a height of O(e~'/?) is appropriate, so formally we let

h=e’h(Y),

with h(Y') given as in (2.2). This scaling is chosen so that the topographic term in (3.2)
be O(e7'/?) compared to the term with the time derivative. In dimensionless terms,
this balance holds if the typical frequency o of the large-scale motion is related to
the unscaled height h according to

h 120 (L 2

=€ 7 (Li> , (3.3)
with L; = NoH/f, where Ny is a typical, say bottom, value of N (N is assumed
to vary by at most O(1) over the depth of the ocean). Since, as discussed in the
Introduction, we assume that L/L; = O(1), this implies that i/H = O(¢'*6/f): the
relative topographic height should be smaller by a factor e'/? than the Rossby number
a/f. This is consistent with the assumptions leading to (3.1)—(3.2) (see Pedlosky 1987,
§6.5). The scaling is shown in figure 1.

In applications, the frequency ¢ associated with the effect of topography is set
according to (3.3), and it should be checked that the corresponding Rossby number
a/f is small, as is required for the quasi-geostrophic approximation to be valid. For
typical oceanic values of H =4km, L = L; = 100km, and for a small-scale topog-
raphy with h=100m, L, = 10km and hence ¢ = 0.1, we find a Rossby number
o/f 8 x 1072 < 1 consistent with the quasi-geostrophic approximation. For com-
parison, barotropic Rossby waves with the same horizontal scale yield a Rossby
number orw/f ~ BL/f = 2 x 1072 which is of a similar order; this indicates that the

small-scale topography and f-effect have a comparable importance for the large-scale
flow (cf. Bobrovich & Reznik 1999).
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Because the natural aspect ratio in a stratified and rotating fluid is fixed by f/No,
the influence of the small-scale topography is confined to a shallow boundary layer
of height fL;/Ny near z = 0 (e.g. Gill 1982, p. 274). It is only in this boundary layer
that the flow fields vary on the scale of the topography or, in other words, depend on
the stretched, or fast, variable Y ; this is the screening effect noted by Bobrovich &
Reznik (1999). Technically, this implies that the averaged evolution equations for the
large-scale motion we are seeking are to be derived using a boundary-layer approach
which we now detail.

Since the depth of the boundary layer is O(e) in terms of the large-scale variables,
we start by introducing the fast vertical variable Z = e~'z. Away from the boundary
layer, in the outer region z = O(1), the streamfunction is expanded according to

Y= E[W(O)(x, zZ,t) + 61/21p(1)(x’z, 0+,

where x = (x, y) are the (slow) horizontal coordinates. The amplitude of the stream-
function is taken of O(e) as in the homogeneous case since this choice implies the
appearance of a non-trivial nonlinearity at leading order. This leads to the simple
leading-order equation of motion

240+ BV =0, with ¢©=22p® 4+ p0 +a.50p?),  (34)

X.

namely the linearized potential-vorticity conservation equation. The upper boundary
condition is

0,0.p% =0 at z=H. (3.5)
The lower boundary condition is found by considering the dynamics within the

boundary layer. In this inner region, with z = O(¢), i.e. Z = O(1), the streamfunction
is expanded as

Y= e[w(O)(x, 0,t) + 61/2¢(1)(x, Y,Z,t)+ €¢(2)(x, Y.Z,t)+ .

The choice of the leading-order streamfunction is made to ensure a proper matching
between the inner and outer expansions. The leading-order inner equation of motion
appears at O(e~'/?) and takes the form

(0 + 00y )03y ¢V + 57107, ¢) = 0.
The corresponding boundary condition appears at O(e'/?) and is
(0 + 0. pV0y)a " + fSHOp® =0 at Z =0.
A rapidly varying solution to these last two equations should satisfy
52YY¢(1) + S_laéz(f)(l) =0,
and
92" = fSI(Y —n) —h(Y)] at Z =0,

and ¢ — pW(x,z = 0,1) as Z — co. Here, n = n(x,t) is the horizontal displacement
across isobaths, which obeys

om =0 at z=0. (3.6)

Such a solution ¢! matches the outer solution which is independent of Y. It is

formally given by
oV = _fsl/Z/fl(l)e

il(Y—n) __ LllY

m e SN2 g1 4+ pD(x,z = 0,1). (3.7)
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At O(1), the inner equation of motion is
(@ + 00y )03y 9 +57107,¢') = 0,
with corresponding lower boundary condition appearing at O(e) in the form
(0, + 0xp oy )ozp? + fSHo PV =0 at Z =0.
Averaging these two equations leads to
61S13%,0%) =0,
and

0,07 (pP) + fS(WopVy =0 at Z =0. (3.8)
A solution for (¢®) matching the outer expansion is

(0%, Z,0) = Z2.pO(x,2 = 0,0) + pP(x,z = 0,1),
which obeys (3.8) provided that
0.0.p O + fS(WodpM) =0 at Z =0. (3.9)

This furnishes the boundary condition for the leading-order outer equation (3.4). We
can write (3.9) as a function of p© and 5 by using (3.7) to eliminate ¢! from the
averaged term, which becomes

(WopM)y = —fS' 2o / / (h(k)h(1))k sgn(l) ™Y +107 =11 gk dj

zfsl/2axn/e”"7ké(k)dk

using (2.3).
The averaged equations of motion, (3.4), (3.5), (3.6) and (3.9) with the superscript
(0) dropped for convenience, take the final form

oq+B-Vy =0, q=0Ly+0;,p+0.(S"0.p) (3.10)
0.0, +K(n)dxn =0 at z=0, (3.11)
om—0oyp=0 at z=0, (3.12)

00.p =0 at z=H. (3.13)

Here, K(n) is the non-local, linear functional of the correlation function C(#) defined
by

K(n) = f253/2/ei"’7|ké(k)dk = ]\f /eikwé(k) dk.

These equations of motion present many similarities with equations (2.8)—(2.9) derived
in the homogeneous approximation; in particular the sole nonlinearity is associated
with the topography and appears in the coefficient K(#). Note, however, that in
the stratified case this coefficient is not simply the (scaled) topography correlation
function but a linear transform thereof. A simple calculation shows that this linear
transform relationship between K(1) and C(n) may also be written as

N3 d
K(n) = T@ A [C](n),
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where J# denotes the Hilbert transform, defined for any function f(x) by the Cauchy-
principal-value integral

1 [ f)

A1) dx,
n) x—x
For later use we note that for a sinusoidal topography given by
h(Y') = hysin(pY), (3.14)
the correlation function is C(n) = h cos(py)/2 and
273 273
KO = 4 | "5 sintpn)| = 2522 costpn). (.15

As in the homogeneous case, it is important to assess the validity of the multiple-
scale approach leading to the averaged equations (3.10)—(3.13). This requires exam-
ining the condition under which ¢!, given by (3.7), is bounded. A direct calculation
from (3.7) gives

(1)) =2f*S / [1 — cos(km)]k2C(k)e "M dk + (™ (x, z = 0,1))?).

We can assume that p!(x,z = 0,t) is bounded since it is determined by a system of
equations analogous to that for . Thus ¢! appears to be bounded provided that
C(k) = O(1) as k — 0. This is a more favourable situation than in the homogeneous
case discussed in §2 (where y! increased like Y !/?) so that localization, if it occurs in
stratified fluids, is likely to have a characteristic length that exceeds the O(e~') found
for homogeneous fluids by Molchanov & Piterbarg (1990).

3.2. Surface quasi-geostrophic dynamics

When f = 0, the interior potential-vorticity dynamics governed by (3.10) becomes
trivial. Assuming that ¢ = 0 and 0,y|.—y =0, one can derive closed evolution
equations for the dynamics of the bottom potential temperature. These equations
can be viewed as resulting from the averaging over small-scale topography of the
surface quasi-geostrophic model studied by, among others, Held et al. (1995). The
two conditions ¢ = 0 and 0,y|,—g = 0 provide a linear relationship between y and
0,y at z = 0. This relation is best expressed in terms of Fourier transforms: let { be
the Fourier transform of vy|,—g, with

(%, 1, 0,1) = / / S (e, 1 1) dk dl,

and, similarly, let @ be the Fourier transform of 0,y|,—o. Assuming that S is constant
for simplicity, it is easy to establish that

0.p = —mS"2 tanh(mS'2H)p, with m = (k* + %)% (3.16)
This relation between Fourier transforms implies the existence of a linear, self-adjoint
pseudo-differential operator . such that
azw|z:0 = guﬂz:O'

(An explicit form of this operator as a convolution can be obtained from (3.16) using
the convolution theorem.) Using this relationship, the dynamics may be formulated
as a closed system for variables defined on the bottom boundary, namely

0Ly +K(n)on =0, om—0dp =0, (3.17)
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where p now denotes |,—o. This system is formally analogous to that derived in the
homogeneous case (with f = 4 = 0), with the important difference that the Laplacian
operator relating vorticity and streamfunction in the homogeneous case is replaced
here by the pseudo-differential operator & relating the potential temperature 6 to the
streamfunction.

4. Waves in continuously stratified fluids
We can examine the finite-amplitude travelling waves which exist in the presence of
topography and f-effect. These waves can be regarded as the stratified counterparts
to those found by Volosov (19764, b, c) in the homogeneous case. Consider a stream-
function and displacement of the form y = yp(x 4+ yy — ct,z) and n = n(x + yy — ct).
With constant S, the averaged equations (3.10)—(3.13) become
—c[(1 490w + 5700 w] + poy =0,
—c>p + K)oy =0 at z=0,
—con—0,p=0 at z=0,
—c?p=0 at z=H,
where f = . + yf,. From the interior vorticity equation and surface boundary con-
dition, both of which are linear, it is possible to derive a linear relationship between

P|;=0 and 0,y |,—o similar to that derived in § 3.3 under the assumption that § = 0. In
terms of the (one-dimensional) Fourier transform ¢, with

wmm=/&wm%,

we find that @, the Fourier transform of 0,y|,—, satisfies

1/2

0.p = —mS'? tanh(mS'?H)p, with m = [k2(1 +9%) + ﬁ} . (4.1)
c

This implies a linear relationship of the form

azlp|z=0 = g/ﬂplz=0;

with a pseudo-differential operator £ which depends parametrically on y and ¢ as
well as on . With this relationship, the travelling-wave problem can be formulated
as a single pseudo-differential equation for 5(x): indeed, the two equations for the
bottom boundary condition can be combined to find

0L pn +K(n)dn =0, (4.2)

and, integrating once,
c2$5n + L(n) = const.,
where L(n) = N*#[C](n)/f is an indefinite integral of K (1).

4.1. Linear waves

The dispersion relation for linear waves is deduced directly from equation (4.2). The
linearization is carried out by replacing the function K(#) by the constant K(0). For
a displacement field # proportional to exp[i(kx + [y — ct)] we find from (4.1) and (4.2)
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the dispersion relation
(k>4 1P+ B/c)/2SV2 tanh[(k* + 1> + B/c)/>*SY2H] = K (0). (4.3)

This transcendental expression relates the wave phase velocity ¢ to the wavevector
(k,1). It is equivalent to that obtained by Bobrovich & Reznik (1999, equation (3.215)),
under our additional assumption L/L; < 1 which is necessary for a formal asymptotic
derivation.

Bobrovich & Reznik (1999) discuss the various solutions to the dispersion relation
and identify barotropic and baroclinic Rossby modes and a topographic mode. We
refer the reader to that paper for details; here, as an illustration, we take f = 0 and
H — oo to consider only the purely topographic modes whose nonlinear extension is
discussed in the next section. In this case, the dispersion relation reduces to

CZ(kZ + ZZ)I/ZSI/Z — K(O)

Specializing to the case of a sinusoidal topography, the frequency can be expressed
as
»_ N *hgp k?
2 (kR
using (3.15). This dispersion relation is quadratic in @: two topographic modes with
opposite directions of propagation are supported by the topography, as is the case
in the homogeneous model. The dependence of the frequency on the wavevector
(k,1) is different from that found in the homogeneous model, however; in particular
the frequency is seen here to be scale dependent. Perhaps surprisingly, the frequency
does not depend on the Coriolis parameter f, although rotation is essential for the
existence of the topographic waves. Note however that for an ocean of finite depth
H < oo, a dependence of the frequency on f appears through the argument of the
hyperbolic tangent in (4.3).
It is worth emphasizing that the vertical structure of the waves is of the form

exp[—N(k* + %)%z /f],

so that they are not particularly confined near the bottom boundary when the
wavenumbers k and [ are small; the screening effect, with localization within a shallow
O(e) bottom boundary layer, concerns thus only the direct, small-scale response to
the topography. The topography, has an indirect, large-scale response in the form
of topographic waves which are not confined in a boundary layer but have an O(1)
vertical extent.

The linear dispersion relation (4.4) has a simple nonlinear generalization for finite-
amplitude waves, which we now discuss.

(4.4)

4.2. Nonlinear waves
To examine nonlinear waves, we concentrate on the case f§ = 0. Travelling waves
satisfy the equation
> %on + L() = const., (4.5)
where #, is obtained from (4.1) by restricting to 5 = 0. (Alternatively, this equation
can be obtained by introducing travelling-wave solutions into the averaged surface

quasi-geostrophic equations (3.17).) Simple solutions to this equation can be found in
the limit H — oo, when

d
Lo — —(1+ yz)l/zsl/zayf.
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In this case, (4.5) may be written

N3
(L4978 2 [ (x) = Tﬁ[C](H(X)) + const.,
where ' = di/dx. For a sinusoidal topography (3.14), and with a vanishing constant,
this equation reduces to

N’} ‘

W;)z)m sin[pn(x)], (4.6)
where we used the form (3.15) for K(n). This can be recognized as the Peierls—
Naborro equation obtained in cristal-dislocation theory (Peierls 1940; Nabarro 1947).
This observation allows solutions to be derived from the work of Toland (1997): up
to translation and addition of integer multiples of 2x, all periodic solutions belong to
a unique family parameterized by a parameter 0 < I' < 1. These solutions take the
form

A ')(x) =

n(x) = f){tan1 [l ' tan(kx/2)] — tan'[I" tan(kx/2)]}
= ;tan_l [L(r~" —I)sin(kx)],

where k is related to I' and ¢ according to
__Nmgp T
- 02(1 _|_y2)1/2 1472
The nonlinear dispersion relation connecting phase velocity ¢, wavenumber k and wave

amplitude is deduced by noting that crests and troughs correspond to x = +n/(2k),
so that I determines the amplitude according to

(4.7)

4
A= I;(tan_1 r-'—tan='n).

This shows, in particular, that p4 < 2n. This relationship can be inverted as
I' =sec(pA/4) — tan(pA/4).
Introducing this result into (4.7) leads to the dispersion relation in the form
»_ N *hgp
2 T+p)P

which directly extends the linear result (4.4). Nonlinearity is seen to lead to a decrease
in the frequency as the wave amplitude increases; it also results in a change in the
wave form, as illustrated in figure 2.

The limit p4 — 27, i.e. ' — 0, is an interesting one: the periodic solution tends to

the kink, or front, solution
— 2 fan-! _NWp x
L A1+ 92172

for the displacement. The velocity field associated with this displacement has the form
of a solitary wave. This is similar to the results obtained by Volosov (19764, b, ¢) for
waves in a homogeneous fluid.

cos(pA/4)
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FIGURE 2. Periodic solutions of the Peierls—Nabarro equations for nonlinear travelling waves
in stratified quasi-geostrophic flow over the sinusoidal topography hgsin(pY). The dimension-
less displacement across topography is plotted against the dimensionless spatial coordinate
X = N2hdpx/[c*(1 +9*)'/?] for T' = 0.125, 0.25, 0.5 and 0.75. Increasing values of I correspond to
decreasing amplitudes, wavelengths and line widths.

5. Eady’s model of baroclinic instability

It is interesting to examine how large-scale baroclinic instability is affected by
the presence of a (one-dimensional) small-scale topography. This has recently been
considered by Benilov (2001) who extended Phillips’ two-layer model of baroclinic
instability to include the effect of topography. Here we use the averaged equations
(3.10)—(3.13) to study baroclinic instability in a stratified fluid with topography. For
simplicity we focus on extending the linear stability analysis of Eady’s model; since
this entails only minor modifications to the standard treatment, we only sketch the
derivation and refer to Pedlosky (1987, p. 523) for details.

Eady’s model considers the stability of a vertically sheared flow (Az,0,0), where A
is the shear, with § = 0. The interior vorticity g is assumed to vanish, so that the
dynamics is governed by the surface quasi-geostrophic equations (3.11)—(3.13). Due
to the basic flow, these are somewhat modified and take the form

0,0, — A0y +K(n)oxy =0 at z =0, (5.1)
om—0yp =0 at z=0, (5.2)
(0; + AHO,)0,yp — A0, p =0 at z=H. (5.3)

Compared to (3.11)—(3.13), (5.1)—(5.3) contain additional terms which are associated
with the mean-flow advection on the upper boundary and with the presence of
a basic potential-temperature gradient induced by the shear on both the top and
bottom boundaries.

(Note that we have assumed that the basic-flow velocity is in the x-direction, i.e.
parallel to the isobaths. This makes the inclusion of the basic flow in the averaged
equations straightforward because all the terms associated with the mean flow involve
only (slow) x-derivatives, so that the equations governing ¢! remain essentially
unchanged. In contrast, a different orientation of the basic flow introduces fast and
slow derivatives in the y-direction and modifies the equations for ¢. Physically
this follows from the non-zero potential-temperature gradient that is imposed in the
x-direction by thermal-wind balance and from its advection by the O(e!/?) velocity
dy ")

To study the spectral stability of the Eady basic flow, we linearize (5.1)—(5.3) by
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FIGURE 3. Imaginary part of the phase velocity ¢ of unstable modes as a function of the horizon-
tal wavenumber p in Eady’s model of baroclinic instability with small-scale topography for the
topographic parameter k = 0,0.02,0.2 and 0.5.

replacing K () by K(0) and consider normal-mode solutions. The constraint ¢ =0
imposes the form

y = [A cosh(mS'/?z) 4+ B sinh(mS'/?z)]el*>+ly—en)

where A and B are two constants, k and [ are the horizontal wavenumbers, and
m = Jk* 4+ 2. Introducing this form into (5.1)-(5.3) and eliminating » leads to a
homogeneous linear system for 4 and B. Non-trivial solutions are found provided
that the dispersion relation between the complex frequency w and the wavenumbers
(k,1) is satisfied. Introducing the parameters

__w — QL2 _ K(©)
= mp MEMSUH K=Tpp

the dispersion relation can be written in dimensionless form as

—c+ <cothu — 12> (1 + E) - COthMK =0.
I Iz ¢ I
In the absence of topography, x = 0 and the quadratic equation for the dimensionless
phase velocity ¢ found in the standard Eady model is recovered (see Pedlosky 1987,
p. 525). When « # 0, the dispersion relation is cubic and can be easily solved, leading
to three values of ¢, with at most two complex-conjugate values associated with
instability.

Figure 3 displays the imaginary part of ¢ of potentially unstable modes as a function
of u for several values of the topographic parameter k. It shows that the presence of
topography has a stabilizing effect on the flow, reducing Imc as well as the growth
rate kImc. At the same time, the range of unstable wavenumbers is shifted toward
small scales. Qualitatively similar conclusions were drawn by Benilov (2001) in his
study of baroclinic instability in a two-layer model.

6. Discussion

This paper employs a multiple-scale approach to derive averaged evolution equa-
tions describing quasi-geostrophic motion over a small-scale one-dimensional topog-
raphy. Small- but finite-amplitude motion is considered, leading to averaged equations
that are nonlinear, with the nonlinearity entering only through the topographic term.
The averaged equations are given by (2.8)—(2.9) in the case of a homogeneous quasi-
geostrophic fluid, already treated by Volosov (1976a,b,c), and by (3.10)—(3.13) in
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the case of a continuously stratified quasi-geostrophic fluid. The latter case can be
regarded as providing a nonlinear extension to the linear results of Bobrovich &
Reznik (1999) and as complementing the nonlinear results of Volosov & Zhdanov
(1983) obtained for a different scaling regime.

The averaged equations derived in this paper and in its predecessors provide what
may be interpreted as a parameterization of the effect of small-scale topography on
large-scale flows. This parameterization has the advantage that it is derived deduc-
tively using an asymptotic approach rather than heuristically; however the simplifying
assumptions which make such an asymptotic derivation possible, weak nonlinearity
in particular, suggest that the parameterization is not adapted for practical imple-
mentation in numerical ocean models which are used for the simulation of strongly
nonlinear ocean dynamics. It is nevertheless interesting to note some of the features
of the averaged equations which one may wish to take into account in the design
of parameterizations. Concentrating here on the continuously stratified case, we note
that: (i) the small-scale topography affects only the bottom boundary condition of the
quasi-geostrophic model, leaving the (linearized) interior potential-vorticity equation
unchanged; (ii) the modified boundary condition is second-order in time and so in-
volves an additional dynamical variable, namely the displacement across topography;
and (iii) the correlation function of the topography entirely characterizes its effect on
the large-scale flow.

A major limitation of the present work, which makes the results relevant only
to particular oceanic areas such as ridge regions, is the assumption of a one-
dimensional topography. The impact of a two-dimensional topography on linear,
homogeneous quasi-geostrophic motion has recently been investigated by the author
(Vanneste 2000qa, b). The averaged equations derived in these papers reveal that the
effect of a two-dimensional topography is significantly more complex than that of
a one-dimensional topography. In particular, the averaged equations turn out to be
integro-differential equations, generally not reducible to a finite set of differential
equations. Also, the main topographic parameter involved in the averaged equation
(in fact a function of time) cannot be expressed directly in terms of the topo-
graphic height h but is determined by solving a variable-coefficient partial-differential
equation. In view of this, it is clear that a similar asymptotic treatment of the
continuously stratified quasi-geostrophic model, although challenging, would be of
interest.

A significant part of the present paper is devoted to the study of nonlinear travelling
waves which exist because of the topography. In the continuously stratified model,
these waves satisfy a pseudo-differential equation which presents a certain theoretical
interest. It is shown here to be integrable in the particular case of a sinusoidal
topography (and for a constant of integration taken to vanish) because it reduces
to the Peierls—Nabarro equation whose solutions are explicitly known. However the
sinusoidal topography is probably an oversimplification for applications and other
topographies deserve attention. These lead to pseudo-differential equations similar to
the Peierls—Nabaro equation (4.6), but with the sine function on the right-hand side
replaced by other functions. It would interesting, if only from a theoretical viewpoint,
to examine which of these functions and hence which forms (or whether all forms) of
the topography lead to integrable pseudo-differential equations.

The author thanks G. M. Reznik for pointing out relevant papers by Volosov
and Zhdanov, J. G. B. Byatt-Smith for providing references on the Peierls—Nabarro
equation, and A. M. Davie for helpful comments on the validity of averaging.
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Appendix. Hamiltonian structure
The quasi-geostrophic equations for homogeneous and continuously stratified fluids
have a Hamiltonian, or more precisely Poisson, structure which proves useful, for
instance to derive invariants and to investigate stability issues (see, e.g. Shepherd
1990). In this Appendix we present the corresponding structure for the averaged
equations (2.8)—(2.9) and (3.10)—(3.13).
A.1. Homogeneous quasi-geostrophic dynamics

Using the vorticity w = V?yp—A*p and displacement 5 as dynamical variables, it is easy
to check that (2.8)—(2.9) can be cast in the Poisson form 0,0 = {w, &}, i = {n,6}
with a Hamiltonian given by

1
& = 3 //[vm2 + 22p? + M(n)] dx dy

and a Poisson bracket defined for two functionals % and % by

O0F \ 09 O 0%
o= [ [" Vi o (m)w‘aﬁx(m)]dm

In the Hamiltonian function, M(#) is defined by M” = 2K and can be interpreted as
a potential energy associated with the topography.
Conservation laws are readily derived for the two Casimir functionals ¥ and %,,

given by
(612//wdxdy and %22//ndxdy,

as well as for the Hamiltonian &. If B = (f.,0), i.e. if the isobaths are parallel to the
lines of constant Coriolis parameter so that the system is invariant under translation
in the x-direction, Noether’s theorem can be used to derive an additional invariant,

namely the momentum
M = —// <11a)+ ﬁzxif) dxdy.

A.2. Continuously stratified quasi-geostrophic dynamics

The Hamiltonian structure of (3.10)—(3.13) takes a convenient form when ¢, # and
0 := S710.y|.—o are taken dynamical variables. The Hamiltonian is given by

1 i
=5 [[[ 10w +@ur+ 5 @ drayaz + 20
where the streamfunction 1 is functionally related to g and 0 according to

2+ oLy +aST0p)=q, ST'0ploo=0, 8.yl =0,

and where, as before, M” = 2K. The Poisson bracket takes the form

o [ s [ [ (5) 5 (2) o

(A1)

M(n)dxdy,
z=0

Three Casimir invariants are readily found; they are given by

%1=///qudydz, ‘gzz// fdxdy and (63=// ndxdy.
z=0 z=0
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When f = (fi,,0) Noether’s theorem yields the momentum invariant

2
ﬂ=/// q dxdydz—// Oy dx dy.
2ﬂx z=0

If f. = 0, the volume integral should be omitted.

The surface quasi-geostrophic model (3.17) obviously also admits a Hamiltonian
structure; with dynamical variables 0 = S™'0.y|.—o = S~' Ly and 5, the Hamiltonian
is given by

&= % //[—Sey—le +S7'M(n)] dx dy,

while the Poisson bracket is given by the surface term in (A 1).
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